Invertibility of Positive Toeplitz Operators and Associated Uncertainty Principle
نویسندگان
چکیده
We study invertibility and compactness of positive Toeplitz operators associated to a continuous Parseval frame on Hilbert space. As applications, we characterize affine Weyl-Heisenberg localization as well give uncertainty principles for the transforms.
منابع مشابه
Positive Toeplitz Operators on the Bergman Space
In this paper we find conditions on the existence of bounded linear operators A on the Bergman space La(D) such that ATφA ≥ Sψ and ATφA ≥ Tφ where Tφ is a positive Toeplitz operator on L 2 a(D) and Sψ is a self-adjoint little Hankel operator on La(D) with symbols φ, ψ ∈ L∞(D) respectively. Also we show that if Tφ is a non-negative Toeplitz operator then there exists a rank one operator R1 on L ...
متن کاملGeneralized Uncertainty Principle and Self-Adjoint Operators
In this work we explore the self-adjointness of the GUP-modified momentum and Hamiltonian operators over different domains. In particular, we utilize the theorem by von-Newmann for symmetric operators in order to determine whether the momentum and Hamiltonian operators are self-adjoint or not, or they have self-adjoint extensions over the given domain. In addition, a simple example of the Hamil...
متن کاملMeromorphic Inner Functions, Toeplitz Kernels, and the Uncertainty Principle
This paper touches upon several traditional topics of 1D linear complex analysis including distribution of zeros of entire functions, completeness problem for complex exponentials and for other families of special functions, some problems of spectral theory of selfadjoint differential operators. Their common feature is the close relation to the theory of complex Fourier transform of compactly s...
متن کاملFredholmness and Invertibility of Toeplitz Operators with Matrix Almost Periodic Symbols
We consider Toeplitz operators with symbols that are almost periodic matrix functions of several variables. It is shown that under certain conditions on the group generated by the Fourier support of the symbol, a Toeplitz operator is Fredholm if and only if it is invertible.
متن کاملToeplitz Operators and Localization Operators
We show that for any localization operator on the Fock space with polynomial window, there exists a constant coefficient linear partial differential operator D such that the localization operator with symbol f coincides with the Toeplitz operator with symbol Df . An analogous result also holds in the context of Bergman spaces on bounded symmetric domains. This verifies a recent conjecture of Co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fourier Analysis and Applications
سال: 2023
ISSN: ['1531-5851', '1069-5869']
DOI: https://doi.org/10.1007/s00041-023-10014-6